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A Distributed Connectionist Representation
for Concept Structures

David S. Touretzky and Shai Geva
Computer Science Department

Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

Abstract. We describe a representation for frame-like concept structures in

a neural network called DUCS. Slot names and slot fillers are diffuse patterns

of activation spread over a collection of units. Our choice of a distributed

representation gives rise to certai., useful properties not shared by conventional

frame systems. One of these is the ability to encode fine semantic distinctions as

subtle variations on the canonical pattern for a slot. DUCS typically maintains

several concepts simultaneously in its concept memory; it can retrieve a concept

given one or more slots as cues. We show how Hinton's notion of a "reduced

description" can be used to make one concept fill a slot in another.

1. Introduction

In a typical Lisp implementation of frames, a frame is a collection of named slots with fillers

(Minsky, 1975; Winston & Horn, 1984). Names are atomic symbols, and fillers are either

atoms or pointers to other frames. This paper considers what a connectionist version of

frames might look like. We describe a representation for frame-like structures in a neural

network called DUCS. Names and fillers are diffuse patterns of activation over a collection

of units. Our choice of a distributed re.,res, rtation (Hinton et al., 1986) for frames gives

rise to certain useful properties that are L, ihared by conventional frame systems.

One thing a connectionist frame system should be able to do is retrieve a slot given an

approximation of its name. For example, suppose the frame describing Fred the cockatoo

had the following slots:

BODY-COLOR: PALE-PINK

BEAK: GRAY-HOOKED-THING

CREST: ORANGE-FEATHERED-THING

HABITAT: JUNGLE
DIET: SEEDS-AND-FRUIT

What does Fred's nose look like? Strictly speaking, birds don't have noses; they have

beaks. If the activity patterns for NOSE and BEAK are similar, which they will be if we use



a microfeature-based representation for symbols, then a connectionist frame system could
simultaneously retrieve the description GRAY-HOOKED-THING and correct the slot name
to read BEAK instead of NOSE. Ordinary frame systems could not do this unless some rule
of form "look for a beak if you can't find a nose" had been explicitly established prior to
the query.

A second advantage of using a distributed representation for frames is that when slots
are encoded as activity patterns, instead of being limited to a small, fixed set of slot names,
the names form a continuous space. Subtle nuances of meaning of the frame as a whole
can be encoded as variations on the activity patterns of its slots. This is useful in the
case role representation of sentences. For example, in "John sold the statue to Mary,"
Mary plays the role of recipient. In "John mailed the package to Boston," Boston's role
would be destination. But in "John threw the ball to Mary" the role of Mary is both
destination (the ball is thrown in her direction and is expected to make contact with her)
and recipient (John's intention is that the ball come into her possession and be under
her control.) In a system based on distributed representations, the pattern representing
Mary's role could be a combination of destination and recipient, sharing microfeatures of
both. Finer shadings of role names are also possible. We propose that in a connectionist
version of case grammar, each combination of a verb, some case roles, and the fillers of
those roles would generate slightly different role name patterns based on subtle nuances of
the meaning of the sentence as a whole.

This idea was anticipated in McClelland and Kawamoto's PDP model of case role
assignment (McClelland & Kawamoto, 1986). Their model provides four case slots called
agent, patient, instrument, and modifier; a representation of the verb is conjunctively
encoded with each slot filler. Although the names of the four slots are fixed, the fillers
undergo variations from their canonical, surface forms according to the context in which
they appear. For example, while there is only one pattern for representing the verb "move"
in the input layer, in the case role layer the representation of "move" will be different when
it has an animate agent that implicitly moves itself ("the cat moved") versus an agent that
moves other things ("the boy moved the cat") versus an inanimate subject ("the rock
moved") which is interpreted as a patient with the agent left unspecified.

In the following sections we describe the architecture of DUCS. The name stands for
Dynamically Updatable Concept Structures. We will use the word concept rather than
frame in the remainder of the paper in order to distinguish DUCS' structures from the
ones used in Lisp-based reasoners. We will discuss two problems peculiar to connectionist
systems. One is the problem of getting a concept to fill a slot in another concept. The
other is the problem of getting concepts not recently accessed to automatically fade from
working memory as new ones are created, so that the memory capacity is not exceeded.

2



Concept
m4emoaryj

4-oncept

Buffer

Im i
I Filler I I Filler I

Figure 1: The DUCS Architecture.

:2. The DUCS Architecture

Both slot names and slot fillers in DUCS employ distributed representations, meaning

they exist as diffuse patterns of activity over a collection of units. Each slot name pattern

determines a mapping of the associated slot filler pattern into an array called the concept

buffer. The patterns that various slots generate in the buffer are superimposed to derive

a pattern for the entire concept. See Figure 1.

DUCS is a two-level architecture. At the slot level, it retrieves individual slots by

name, and can add, change, or delete slots by modifying the activity pattern in the concept

buffer. Through the use of multiple slot mapping assemblies, each consisting of a slot name

group, a slot filler group, and a selector group, several slots can be created or modified

simultaneously. Thus it is possible to create a complex concept in a single operation as

long as the number of slots does not exceed the available mapping hardware. Slots can

also be loaded into the buffer sequentially. W -

At the concept level, DUCS manipulates entire concepts at a time rather than individual C

slots. Concepts are added to or deleted from an auto-associative concept memory via the 0

concept buffer. DUCS retrieves a concept from concept memory using one or more slots as

cues, in the following way. First the cues are loaded into slot mapping assemblies, where

they generate a partial activity pattern in the concept buffer. Then the concept buffer
y Codes

a l/or
3 Dist Speoial
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Figure 2: Mapping the slot filler bit vi into one of 2R concept memory bits based on an
R-bit subset of the slot name. Mutually inhibitory connections among the 2R selector

units have been omitted for clarity.

supplies input to the concept memory, allowing it to complete the pattern and cause the

remaining slots of the concept to materialize in the buffer.

2.1. The Slot Level

Slot names and slot fillers are N and F bit binary feature vectors, respectively, appended to
their logical complements. That is, a slot name d is a 2N-bit vector such that Gj = d(i N),

1 < Z < N. Similarly, a slot filler 16 is a 2F-bit vector where vi = U(jF), 1 < i < F. The

concept buffer and each selector group are 4F x 2R arrays, where R is a parameter between

0 and N.

Storing the filler pattern V in the slot named 5 generates a 4F x 2 R pattern over the

selector array se,. Each bit vi is copied into one of the 2R locations in column i of the

array, and independently, into one of the 2R locations in column i + 2F. The locationj

4
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Figure 3: The state of the network part way through a retrieval of the AGENT slot.

within the column is determined by an R-bit subset of the slot name; a different subset is

randomly associated with each column. After the selector group has stabilized, the active

units s,j are allowed to excite the corresponding units b,,, in the concept buffer, thereby
superimposing the pattern for this slot onto the previous contents of the buffer.

Figure 2 shows the wiring for mapping the value of a single slot filler bit u, into some

s,j in column i. Selector units within a column form mutually-inhibitory winner-take-all

networks, so that in a stable state at most one selector per column will be active. The
chosen unit will be the one with the most activation, i.e., the one with the most of its

R input lines from the slot name group active. In the figure, R = 2, so the position j is
determined by two slot name bits. Note that vi will also be copied into some position k in

column i + 2F, where k is determined by a different pair of bits randomly chosen from the
slot name. Also, v,- F, which is U,-will be copied into columns i + F and i + 3F in positions
determined by two other pairs of slot name bits. Thus the pattern developed in the selector

group consists of two copies of each filler bit v, and two copies of its complement, with each
copy deposited in one of the 2R positions in that column determined by the slot name.

The units in the slot name, slot filler, and selector groups are continuous-valued non-

linear units with outputs restricted to the unit interval; all connections are symmetric. This

is commonly known as a Hopfield and Tank model (Hopfield & Tank, 1985). Retrievals

are accomplished by clamping the concept buffer and slot name space and setting a low

gain value for selector and slot filler units. The gain then rises fairly quickly, and part

way through the slot name group is unclamped. At high gain the network settles into a

stable state representing the slot filler and (possibly corrected) slot name extracted from

the concept buffer. Figure 3 shows the state of the network at a medium gain setting.

Here, slot names and fillers are ASCII strings (using a five bit character code) rather than

5
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Figure 4: Error correction circuitry to exploit tbe redundant storage of slot fillers.

vectors of microfeatures, in order to make the model's operation more transparent. The

bottom group of units represents the slot name "AGNT". The vector above that shows -

four copies of the slot filler "JOHN", two of which are logically inverted. The array at the

top of the figure depicts the activity in the concept buffer (L-shaped symbols) and selector
group (solid circles.) Three slots have been stored in the buffer; therefore each column of

the array has between zero and three L-shapes, indicating active concept buffer units bij.
The size of the circles indicates the output level of the corresponding selector units sij.

Most columns have only one large circle, but some have two, indicating a pair of selectors

in competition. At high gain all units will be either fully on or fully off, and there will be

at most one active selector per column.

Selector units function as skeleton filters, so-called because only a skeleton subset of

the units are enabled at any one time. Hinton (1981) used skeleton filters in a connection-

"st implementation of a semantic network. Sejnowski (1981) presents arguments for the

existence of skeleton filters in the brain.

The redundant storage of fillers helps correct errors that may occur when several slots

are superimposed in the concept buffer. Two slots can potentially interfere at column i

when the R-bit subset of the slot name group examined by that column yields the same j
value for both slots. If the first slot has a 1 in bit v, and the second slot has a 0 (which

implies the reverse situation in bit v,±p), sij will be set to 1. But each filler bit is stored
several times using a different R-subset each time, and the two slots are unlikely to overlap

in every copy. Figure 4 shows the error correction circuitry used during slot retrieval to

derive bits vi and v,+p. from Si,, Si.*,k, 8,+2FJ, and 8si3P,,n via a majority voting scheme,
where j, k, 1, and m are detirmined by different R-subsets. The error correction imposes

a constraint on the filler pattern that it have F bits on, and that i = Ui.., 1 < i _< F.

The error correction scheme is also important for associative retrieval. Suppose the
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network tries to retrieve a slot with a few bits of the slot name in error. Most of the 4F
different R-subsets of the slot name will pick bits that are correct, so most filler bits will be
mapped to the correct positions in their respective columns. Those columns that reference
incorrect slot name bits will not be mapped properly. The error correction circuitry puts
pressure on the slot filler group to settle into a pattern that meets the above mentioned
constraints, and this in turn puts pressure on the selector units. If enough pressure is
applied, the selector units can force the slot name units to change. This is how the
network can change NOSE to BEAK during retrieval from a bird concept, assuming that
the two symbols have similar activity patterns and a valid filler exists in the BEAK slot.

The parameter R determines the number of slots the concept buffer can hold. Since

each filler bit maps into one of 2P positions in its column, increasing R increases the
sparseness of the concept buffer and reduces the chance that slots will interfere. Another
way to increase the capacity of the concept buffer would be to to widen the array from 4F

to, say, 6F units, to provide improved error correction.

2.2. The Concept Level

DUCS can memorize or retrieve entire concepts in a single operation. The activity pattern
for a concept is a bit vector of length 4Fx 2R . The concept memory, shown in Figure 1, is
a (4F x 2R) by (4F x 2 R) matrix forming a Willshaw-style auto-associative net (Willshaw,
1981). For every pair of active concept buffer units bij and bi.j. there is a concept memory

unit. To store a pattern in concept memory it suffices to turn on each concept memory
unit whose associated pair of concept buffer units is active.

To retrieve a concept, some subset of the pattern, generated by whatever cues were
supplied, is fed into the auto-associative net. The retrieval is based on the assumption that

the retrieval cues are correct. It yields a superposition of all patterns for concepts stored

in the concept memory that match the given cues. For example, if two concepts with John
as agent had been stored, both would be retrieved from the single cue AGENT=JOHN. A
more detailed cue would be required to restrict the retrieval to a single concept. On the

other hand, if no bits in addition to the original cue are retrieved, then the cue is a full

specification of the desired concept, or else no such concept is stored in the memory. The

network can detect whether a retrieval was successful by checking whether all pairs of bits
in the concept buffer have their associated concept memory unit active. If this is the case,

then the cue supplied was a valid one and only a single concept was retrieved.

3. Naming and Reduced Descriptions

In Lisp it's easy to make one structure point to another. One way to achieve a similar

effect in connectionist models is to use a technique called reduced descriptions (Hinton,

7



1987.) For _xarnple, to represent "Bill knows that John kissed Mary" we first create and
store the concept "John kissed Mary." Then we derive a small pattern for this concept, the

reduced description, to fill the patient role in the concept "Bill knows that z," as shown:

AGENT: JOHN ( AGENT: BILL

VERB: KISS VERB: KNOW
PATIENT: MARY PATIENT: JhnKssMry

In order for this technique to work, the network must be able to retrieve the full pattern
for a concept given its reduced description. In DUCS we obtain the reduced description

simply by taking an F-bit slice out of the concept buffer. The exact choice of slice is
unimportant; currently we use b0.0 through bFo. To "follow the pointer" in the patient slot
to get to the full description of what Bill knows, the F-bit filler pattern is clamped into bits

b0,0 through bF.o of the concept buffer, and this serves as the cue for the associative network
to retrieve the rest of the concept pattern. Touretzky (1986) describes another version of
pointer following in a connectionist network which does not use reduced descriptions.

4. Forgetting

The concept memory has a limited capacity. If a reasoner continually generates and stores

new concepts, the memory could fill up, making further processing impossible. We view
DUCS as a short term working memory for concept structures. In order to prevent its

memory capacity from being exceeded, we implemented a forgetting mechanism by which
concepts not recently accessed can fade and be displaced by newly stored ones.

Each unit in the concept memory has two parameters: an internal integer activation

value in the interval [0, c], and a binary output value that is 1 whenever the activation
value is positive. To memorize a concept pattern, the first step is to decrement the activity

levels of all concept memory units by one. Any unit whose activity has decayed to zero

turns off. Then, for each pair of active units b,4. and b,.j. in the concept buffer, the
corresponding concept memory unit is given an initial activity level of c. With this protocol,

concept memory will hold at most c distinct concepts at a time, provided that concepts

are reinforced in concept memory only after non-ambiguous retrieval.

For auto-associative retrieval, concept memory units are treated as binary state units,

with any non-zero activation value indicating a 1 state. Whenever a concept is retrieved

into the concept buffer, it is immediately re-stored into concept memory. This refreshes

the concept memory units by setting their activation levels back to c. Concepts which

have not been fetched from concept memory for a while eventually decay due to lack of

refresh. Non-active memory units are never reinforced, even if their associated pair of

concept buffer units is active, to prevent undesired merging of multiple concepts retrieved

simultaneously due to ambiguous cues.

8



5. Discussion

There are many architectures for building associative memories (Hinton & Anderson, 1981;

Baum et al., 1987). One of the unique features of DUCS is its two level structure: concepts
can be recalled from concept memory into the concept buffer using slots as cues, and slots
can be recalled from the concept buffer using their names as cues. The fact that slots are

represented as activity patterns rather than as weights makes this possible.

Hinton's reduced description idea has great potential which we have only begun to

explore. He suggests that the reduced description pattern should be meaningful (i.e.,
'uterpretable) in its own right. Our current version contains too few bits to meet this

criterion. An enhanced version might contain information about the type of the concept
and a summary description of its slots. This would make it possible to make gross inferences
about concepts (e.g., that Bill knows a fact about some male person kissing some female

person) without having to expand each reduced description beforehand. An ideal reduced

description mechanism, rather than just taking a fixed slice out of a concept, would detect
and focus on relevant features to evolve the most meaningful set of reduced descriptions

possible in a given domain. We don't yet know how this might be accomplished.
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